Home > Product > APIs > Bradykinin Acetate

APIs

Bradykinin Acetate

Price Inquiry
CAT#
10-101-72
Synonyms/Alias
BK; L-Bradykinin; Callidin I; CallidinI; Callidin-I; KallidinI; Kallidin I; Kallidin-I; C acid; C-acid; Kallidin 9; Kallidin-9; Kallidin9; Bradykinin
CAS No.
6846-03-3
Sequence
H-Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg-OH acetate salt
M.W/Mr.
1060.22
Molecular Formula
C50H73N15O11
Source
Synthetic
Long-term Storage Conditions
−20°C
Application
The pharmacological properties of bradykinin include smooth muscle contraction, vasodilation and hypotension, increase in capillary permeability with edema formation and induction of pain. It induces broncoconstriction in asthmatic subjects and symptoms of rhinitis in nasal provocation.
Description
Bradykinin is a physiologically and pharmacologically active peptide of the kinin group of proteins, consisting of nine amino acids.
Areas of Interest
Diseases
  • Background
  • Related Products
  • References

Bradykinin, a 9 aa peptide, is generated in pathophysiologic conditions such as inflammation, trauma, burns, shock, and allergy. Two types of G-protein coupled receptors have been found which bind bradykinin and mediate responses to these pathophysiologic conditions. The protein encoded by this gene is one of these receptors and is synthesized de novo following tissue injury. Receptor binding leads to an increase in the cytosolic calcium ion concentration, ultimately resulting in chronic and acute inflammatory responses. Several transcript variants encoding different isoforms have been found for this gene.

CAS: 189691-06-3
Sequence: Ac-Nle-cyclo(-Asp-His-D-Phe-Arg-Trp-Lys-OH)
M.W: 1025.18
Molecular Formula: C50H68N14O10
CAS: 138890-62-7
Sequence: ---
M.W: 383.51
Molecular Formula: C12H21N3O5S3
CAS: 47931-85-1 (net)
Sequence: H-Cys-Ser-Asn-Leu-Ser-Thr-Cys-Val-Leu-Gly-Lys-Leu-Ser-Gln-Glu-Leu-His-Lys-Leu-Gln-Thr-Tyr-Pro-Arg-Thr-Asn-Thr-Gly-Ser-Gly-Thr-Pro-NH2 acetate salt (Disulfide bond)
M.W: 3431.9
Molecular Formula: C145H240N44O48S2
CAS: 37025-55-1
Sequence: Butyryl-Tyr(Me)-Ile-Gln-Asn-Cys-Pro-Leu-Gly-NH2(Disulfide bond)
M.W: 988.2
Molecular Formula: C45H69N11O12S
CAS: 38821-49-7
Sequence: ---
M.W: 244.24
Molecular Formula: C10H16N2O5

The nonapeptide bradykinin is an important growth factor for many cancers. Certain peptide and non-peptide bradykinin antagonists show remarkable anti-cancer activities in both in vitro and in vivo cancer models, especially of lung and prostate cancers. Bradykinin antagonists stimulate apoptosis in cancers by a novel "biased agonist" mechanism: they block intracellular increase of calcium concentration but stimulate the MAP kinase pathway. This unbalanced effect stimulates caspase activation. In nude mouse xenotransplants of lung and prostate cancers the antagonists inhibit angiogenesis and activation of membrane metalloproteases (MMP 2 and 9). In the xenotransplants certain bradykinin antagonists showed higher potency than standard anti-cancer drugs, without evident toxicity to the hosts. These compounds offer great promise for development of new anti-cancer drugs.

Stewart J M. Bradykinin antagonists as anti-cancer agents[J]. Current pharmaceutical design, 2003, 9(25): 2036-2042.

Because bradykinin (BK) appears to have cardioprotective effects ranging from improved hemodynamics to antiproliferative effects, inhibition of BK-degrading enzymes should potentiate such actions. The purpose of this study was to find out which enzymes are responsible for the degradation of BK in human plasma.

Kuoppala A, Lindstedt K A, Saarinen J, et al. Inactivation of bradykinin by angiotensin-converting enzyme and by carboxypeptidase N in human plasma[J]. American Journal of Physiology-Heart and Circulatory Physiology, 2000, 278(4): H1069-H1074.

The effect of bradykinin was studied by inhalation in normal and asthmatic human subjects, as well as on human bronchial smooth muscle in vitro. Bradykinin caused cough and retrosternal discomfort in all subjects and bronchoconstriction in asthmatic subjects. Bradykinin was approximately 10 times more potent than histamine and methacholine, and there was a significant correlation between the subjects' sensitivity to histamine and bradykinin. Bradykinin-induced bronchoconstriction was prolonged when compared with that of histamine and the C-fiber stimulant capsaicin.

Fuller R W, Dixon C M S, Cuss F M C, et al. Bradykinin-induced Bronchoconstriction in Humans: Mode of Action 1–3[J]. American Review of Respiratory Disease, 1987, 135(1): 176-180.

Online Inquiry

First Name:
Last Name:
Phone:
Email: *
Service & Products of Interest: *
Services Required and Project Description:
Verification code: *Please enter the code "peptides"
Home | Site Map | Contact Us | Resources
Copyright © 2008 - Creative Peptides. All rights reserved.