Thymosin β15 is a small actin-binding protein upregulated in highly metastatic rat prostate cancer cells, relative to low metastatic cells.
CAT No: 10-101-100
Synonyms/Alias:Thymosin β15; Tβ15; Tb15; NB thymosin; NB thymosin beta; thymosin NB; TMSB15A; thymosin-like protein 8; TMSL8; TMSNB; thymosin beta-15A; thymosin beta 15A
The purpose of this study was to define the inhibitive effects of dietary nickel chloride (NiCl2) on thymocytes in broilers fed on diets supplemented with 0, 300, 600, and 900 mg/kg of NiCl2 for 42 days. We examined the changes of cell cycle phase, percentages of apoptotic cells, T cell subsets, cytokines, and mRNA expression of apoptotic proteins (bcl-2, bax, and caspase-3) in thymocytes by flow cytometry and quantitative real-time polymerase chain reaction (qRT-PCR). In the NiCl2-treated broilers, the percentages of thymocytes in G0/G1 phase were increased, whereas thymocytes in the S phase and the proliferation index were decreased. The percentages of apoptotic thymocytes were increased. Also, the mRNA expression levels of bax and caspase-3 were increased, and mRNA expression levels of bcl-2 were decreased. The percentages of CD3(+), CD3(+)CD4(+), and CD3(+)CD8(+) T lymphocytes in the thymus and peripheral blood were diminished. Concurrently, thymic cytokine (interleukin-1 beta (IL-1β), interleukin-2 (IL-2), interleukin-10 (IL-10), interleukin-12 p35 subunit (IL-12p35), interleukin-12 p40 subunit (IL-12p40), interleukin-21 (IL-21), interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α), thymosin β4, thymosin β10, and thymosin β15) mRNA expression levels were decreased. The abovementioned results showed that dietary NiCl2 in excess of 300 mg/kg inhibited thymocyte growth by arresting cell cycle, increasing apoptosis percentage, altering apoptotic protein mRNA expression levels, and downregulating cytokine expression levels.
Tang, K., Guo, H., Deng, J., Cui, H., Peng, X., Fang, J., ... & Yin, S. (2015). Inhibitive effects of nickel chloride (NiCl2) on thymocytes. Biological trace element research, 164(2), 242-252.
Motile cancer cells depend on assembly and disassembly of actin filaments to extend their leading edges as they move, so alterations in the expression or properties of actin binding proteins may influence their invasiveness. Tumor cell movements might be enhanced by overexpression or activating mutations of proteins that stimulate the actin system or lower expression or inactivation of proteins that act as negative regulators of the actin system. Some transformed cells express reduced levels of tropomyosin or α-actinin, proteins that stabilize actin filaments and actin filament bundles, and restoring their expression can reverse some transformed phenotypes. On the other hand, the increased expression of thymosin β15 and gelsolin, proteins implicated in the disassembly of the actin filaments, correlates with poor clinical outcome of cancer patients.
Maul, R. S., Song, Y., Amann, K. J., Gerbin, S. C., Pollard, T. D., & Chang, D. D. (2003). EPLIN regulates actin dynamics by cross-linking and stabilizing filaments. J Cell Biol, 160(3), 399-407.
2. Implications of ligand-receptor binding kinetics on GLP-1R signalling
3. SERS spectrum of the peptide thymosin‐β4 obtained with Ag nanorod substrate
4. Cell-based adhesion assays for isolation of snake venom’s integrin antagonists
If you have any peptide synthesis requirement in mind, please do not hesitate to contact us at . We will endeavor to provide highly satisfying products and services.
Creative Peptides is a trusted CDMO partner specializing in high-quality peptide synthesis, conjugation, and manufacturing under strict cGMP compliance. With advanced technology platforms and a team of experienced scientists, we deliver tailored peptide solutions to support drug discovery, clinical development, and cosmetic innovation worldwide.
From custom peptide synthesis to complex peptide-drug conjugates, we provide flexible, end-to-end services designed to accelerate timelines and ensure regulatory excellence. Our commitment to quality, reliability, and innovation has made us a preferred partner across the pharmaceutical, biotechnology, and personal care industries.