Myelin Oligodendrocyte Glycoprotein (MOG) is a glycoprotein believed to be important in the process of myelinization of nerves in the central nervous system (CNS). It is a transmembrane protein expressed on the surface of oligodendrocyte cell and on the outermost surface of myelin sheaths.
CAT No: 10-101-57
CAS No: 163913-87-9
Synonyms/Alias: PMG-3660-PI;MOG (Rat, Mouse, 35-55);163913-87-9;H-Met-Glu-Val-Gly-Trp-Tyr-Arg-Ser-Pro-Phe-Ser-Arg-Val-Val-His-Leu-Tyr-Ar g-Asn-Gly-Lys-OH; Myelin Oligodendrocyte Protein (35-55); MOG (35-55); MEVGWYRSPFSRVVHLYRNGK;
Quick InquiryCustom Peptide SynthesisPeptide Library Construction and Screening
Powerful screening tools in biological and chemical research
M.F/Formula | C118H177N35O29S |
M.W/Mr. | 2582 |
Sequence | One Letter Code:MEVGWYRSPFSRVVHLYRNGK Three Letter Code:H-D-Met-D-Glu-D-Val-Gly-Trp-D-Tyr-Arg-Ser-D-Pro-Phe-D-Ser-Arg-Val-Val-D-His-Leu-D-Tyr-Arg-Asn-Gly-Lys-OH |
Labeling Target | T-cell and B-cell |
Application | Interest in MOG has centered on its role in demyelinating diseases, particularly multiple sclerosis (MS). |
Areas of Interest | Immunomodulating Agents Multiple Sclerosis |
Source# | Synthetic |
Solubility | −20°C |
InChI | InChI=1S/C118H177N35O29S/c1-61(2)47-80(103(169)143-81(49-66-30-34-70(156)35-31-66)104(170)139-75(26-17-42-129-116(122)123)99(165)145-86(53-90(121)158)98(164)133-56-91(159)136-79(115(181)182)25-15-16-41-119)142-108(174)85(52-69-55-128-60-135-69)147-112(178)95(63(5)6)152-113(179)96(64(7)8)151-101(167)77(28-19-44-131-118(126)127)141-109(175)87(58-154)148-106(172)83(48-65-21-11-10-12-22-65)146-110(176)89-29-20-45-153(89)114(180)88(59-155)149-100(166)76(27-18-43-130-117(124)125)140-105(171)82(50-67-32-36-71(157)37-33-67)144-107(173)84(51-68-54-132-74-24-14-13-23-72(68)74)137-92(160)57-134-111(177)94(62(3)4)150-102(168)78(38-39-93(161)162)138-97(163)73(120)40-46-183-9/h10-14,21-24,30-37,54-55,60-64,73,75-89,94-96,132,154-157H,15-20,25-29,38-53,56-59,119-120H2,1-9H3,(H2,121,158)(H,128,135)(H,133,164)(H,134,177)(H,136,159)(H,137,160)(H,138,163)(H,139,170)(H,140,171)(H,141,175)(H,142,174)(H,143,169)(H,144,173)(H,145,165)(H,146,176)(H,147,178)(H,148,172)(H,149,166)(H,150,168)(H,151,167)(H,152,179)(H,161,162)(H,181,182)(H4,122,123,129)(H4,124,125,130)(H4,126,127,131)/t73-,75+,76+,77+,78-,79+,80+,81-,82-,83+,84+,85-,86+,87-,88+,89-,94-,95+,96+/m1/s1 |
InChI Key | JMTCEFUSRHYJBF-JBUDPUMDSA-N |
BoilingPoint | N/A |
References | The use of HLA class II-transgenic (Tg) mice has facilitated identification of antigenic T cell epitopes that may contribute to inflammation in T cell-mediated diseases such as rheumatoid arthritis and multiple sclerosis (MS). In this study, we compared the encephalitogenic activity of three DR2-restricted myelin determinants [mouse (m) myelin oligodendrocyte glycoprotein (MOG)-35-55, human (h)MOG-35-55 and myelin basic protein (MBP)-87-99] in Tg mice expressing the MS-associated DR2 allele, DRB1*1501. We found that mMOG-35-55 peptide was strongly immunogenic and induced moderately severe chronic experimental autoimmune encephalomyelitis (EAE) with white matter lesions after a single injection in Freund's complete adjuvant followed by pertussis toxin. hMOG-35-55 peptide,which differs from mMOG-35-55 peptide by a proline for serine substitution at position 42, was also immunogenic, but not encephalitogenic, and was only partially cross-reactive with mMOG-35-55. In contrast, MBP-87-99, which can induce EAE in double-Tg mice expressing both HLA-DR2 and a human MBP-specific TCR, was completely non-encephalitogenic in HLA-DR2-Tg mice lacking the human TCR transgene. These findings demonstrate potent encephalitogenic activity of the mMOG-35-55 peptide in association with HLA-DR2, thus providing a strong rationale for further study of hMOG-35-55 peptide as a potential pathogenic determinant in humans. Rich, C., Link, J. M., Zamora, A., Jacobsen, H., Meza‐Romero, R., Offner, H., ... & Vandenbark, A. A. (2004). Myelin oligodendrocyte glycoprotein‐35–55 peptide induces severe chronic experimental autoimmune encephalomyelitis in HLA‐DR2‐transgenic mice. European journal of immunology, 34(5), 1251-1261. Intravenous (i.v.) administration of encephalitogenic peptide can effectively prevent experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis; however, the underlying cellular and molecular mechanisms are not fully understood. In this study, we induced i.v. tolerance to EAE by administration of MOG(35-55) peptide and determined the effect of this approach on intracellular signaling pathways of the IL-23/IL-17 system, which is essential for the pathogenesis of MS/EAE. In tolerized mice, phosphorylation of JAK/STAT-1, -4, ERK1/2 and NF-kappaBp65 were significantly reduced in splenocytes and the central nervous system. MOG i.v. treatment led to significantly lower production of IL-17, and administration of exogenous IL-17 slightly broke immune tolerance, which was associated with reduced activation of STAT4 and NF-kappaB. Suppressed phosphorylation of these pathway molecules was primarily evident in CD11b(+) and small numbers of CD4(+), CD8(+) and CD11c(+) cells. More importantly, adoptive transfer of CD11b(+) splenocytes of tolerized mice effectively delayed onset and reduced clinical severity of actively induced EAE. This study correlates MOG i.v. tolerance with modulation of Jak/STAT signaling pathways and investigates novel therapeutic avenues for the treatment of EAE/MS. Jiang, Z., Li, H., Fitzgerald, D. C., Zhang, G. X., & Rostami, A. (2009). MOG35–55 iv suppresses experimental autoimmune encephalomyelitis partially through modulation of Th17 and JAK/STAT pathways. European journal of immunology, 39(3), 789-799. |
Melting Point | N/A |
1. Store-operated Ca2+ entry sustains the fertilization Ca2+ signal in pig eggs
2. Cell-based adhesion assays for isolation of snake venom’s integrin antagonists
3. Autoinhibition and phosphorylation-induced activation of phospholipase C-γ isozymes
4. C-Peptide replacement therapy and sensory nerve function in type 1 diabetic neuropathy
5. Emerging applications of nanotechnology for diagnosis and therapy of disease: a review
If you have any peptide synthesis requirement in mind, please do not hesitate to contact us at info@creative-peptides.com. We will endeavor to provide highly satisfying products and services.