Cyclotraxin B is highly potent and selective TrkB receptor antagonist that inhibits BDNF-induced TrkB activity (IC50 = 0.30 nM). It allosterically changes the conformation of TrkB receptor, but does not change BDNF binding.
CAT No: R0881
CAS No:1203586-72-4
Synonyms/Alias:Cyclotraxin B;1203586-72-4;Cyclotraxin B acetate;(3S,6R,11R,17S,20S,23S,26S,32S,35S)-6-amino-20-(4-aminobutyl)-3-(2-amino-2-oxoethyl)-17-(2-carboxyethyl)-23-[(1R)-1-hydroxyethyl]-26-[(4-hydroxyphenyl)methyl]-32-(2-methylsulfanylethyl)-2,5,13,16,19,22,25,28,31,34-decaoxo-8,9-dithia-1,4,12,15,18,21,24,27,30,33-decazabicyclo[33.3.0]octatriacontane-11-carboxylic acid;DTXSID501045820;AKOS024458477;AS-85368;DA-72492;PD079892;G14323;S-1203586-72-4;
Cocaine exposure alters brain-derived neurotrophic factor (BDNF) expression in the brain. BDNF signaling through TrkB receptors differentially modulates cocaine self-administration, depending on the brain regions involved. In the present study, we determined how brain-wide inhibition of TrkB signaling affects cocaine intake, the motivation for the drug, and reinstatement of drug taking after extinction. To overcome the inability of TrkB ligands to cross the blood–brain barrier, the TrkB antagonist cyclotraxin-B was fused to the nontoxictransduction domain ofthetat proteinfrom human immunodeficiency virustype 1 (tat-cyclotraxin-B). Intravenous injection of tat-cyclotraxin-B dose-dependently reduced cocaine intake, motivation for cocaine (as measured under a progressive ratio schedule of reinforcement), and reinstatement of cocainetaking in rats allowed either short or long accessto cocaine self-administration.
Systemic Delivery of a Brain-Penetrant TrkB Antagonist Reduces Cocaine Self-Administration and Normalizes TrkB Signaling in the Nucleus Accumbens and Prefrontal Cortex
By using a peptidomimetic approach, we developed a highly potent and selective TrkB inhibitor, cyclotraxin-B, capable of altering TrkB-dependent molecular and physiological processes such as synaptic plasticity, neuronal differentiation and BDNF-induced neurotoxicity. Cyclotraxin-B allosterically alters the conformation of TrkB, which leads to the inhibition of both BDNF-dependent and -independent (basal) activities.
Cyclotraxin-B, the First Highly Potent and Selective TrkB Inhibitor, Has Anxiolytic Properties in Mice
3. TMEM16F and dynamins control expansive plasma membrane reservoirs
4. SERS spectrum of the peptide thymosin‐β4 obtained with Ag nanorod substrate
5. Cationic cell-penetrating peptides are potent furin inhibitors
If you have any peptide synthesis requirement in mind, please do not hesitate to contact us at . We will endeavor to provide highly satisfying products and services.
Creative Peptides is a trusted CDMO partner specializing in high-quality peptide synthesis, conjugation, and manufacturing under strict cGMP compliance. With advanced technology platforms and a team of experienced scientists, we deliver tailored peptide solutions to support drug discovery, clinical development, and cosmetic innovation worldwide.
From custom peptide synthesis to complex peptide-drug conjugates, we provide flexible, end-to-end services designed to accelerate timelines and ensure regulatory excellence. Our commitment to quality, reliability, and innovation has made us a preferred partner across the pharmaceutical, biotechnology, and personal care industries.